Isolated Toll-like Receptor Transmembrane Domains Are Capable of Oligomerization

نویسندگان

  • James I. Godfroy
  • Mohammad Roostan
  • Yurii S. Moroz
  • Ivan V. Korendovych
  • Hang Yin
چکیده

Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipopolysaccharide Induced Activation of Toll Like Receptor 4 in Isolated Rat Heart Suggests a Local Immune Response in Myocardium

Background: Myocardial dysfunction is one of the major complications in patients with sepsis where there is a relationship between the blood level of cytokines and the onset of myocardial depression. In many cases of sepsis, the presence of Lipopolysaccharide (LPS) has been established. LPS Binding Protein (LBP) bound endotoxin is recognized by CD14/toll-like receptor-4 (TLR4) complexes in inna...

متن کامل

In silico Study of Toll-Like Receptor 4 Binding Site of FimH from Uropathogenic Escherichia coli

  Introduction : The innate immune system as the first line of defense against the pathogens recognizes pathogen-associated molecular patterns (PAMPs) by Toll-Like Receptors (TLRs). Interaction of bacterial PAMPs by TLRs results in activation of innate and acquired immunity. FimH adhesin, a minor component of type 1 fimbriae encoded by Uropathogenic Escherichia coli (UPEC) is a PAMP of TLR4 tha...

متن کامل

Computational Insight Into the Structural Organization of Full-Length Toll-Like Receptor 4 Dimer in a Model Phospholipid Bilayer

Toll-like receptors (TLRs) are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM), and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structu...

متن کامل

Transmembrane domains 1 and 2 of the latent membrane protein 1 of Epstein-Barr virus contain a lipid raft targeting signal and play a critical role in cytostasis.

The latent membrane protein 1 (LMP-1) oncoprotein of Epstein-Barr virus (EBV) is a constitutively active, CD40-like cell surface signaling protein essential for EBV-mediated human B-cell immortalization. Like ligand-activated CD40, LMP-1 activates NF-kappaB and Jun kinase signaling pathways via binding, as a constitutive oligomer, to tumor necrosis factor receptor-associated factors (TRAFs). LM...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012